

The MINERVA Experiment

Elaine Schulte

Rutgers, The State University of New Jersey
Piscataway, NJ

On Behalf of the MINER vA Collaboration

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

1

Introduction

- 1. What physics topics are accessible to Minerva?
- 2. Why are these topics important?
- 3. How will Minerva address this physics?

Physics Topics Accessible to Minerva

Physics Topic	Experimental Need
Deeply-Inelastic Scattering:	Improved statistics with better determination of final states
Quasi-Elastic Scattering: Axial Form Factor of Nucleon	Improved Precision over a wide Q ² Range
Coherent Scattering: Single Pion Production	Improved statistical precision of total cross section Measurements of nuclear dependence (Adependence)
Resonance Production: Both Neutral Current (NC) and Charged Current (CC)	Improved statistical precision with 1-5 GeV neutrinos Quark-Hadron Duality
Nuclear Physics	Precision studies of neutrino-nucleus scattering as compared to charged lepton-nucleus scattering.

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

:

Existing Measurements of Neutrino-Nucleon Cross Section

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

Quasi-Elastic Neutrino Scattering

$F_v^{1}(q^2) \& F_v^{2}(q^2)$ are the Vector Form Factors

(extractable from G_{E}^{N} , G_{M}^{N})

$F_{A}(q^{2})$ is the Axial Form Factor

(extractable from neutrino scattering!)

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

5

Form Factor Measurements

MINER_VA Measurement of Axial FF

QE scattering, ν_{μ} , $F_A(Q^2)/\text{dipole}$, $M_A=1.014$ GeV

Minerva estimated $F_A(Q^2)$ statistical precision based on Monte Carlo simulation attached to the electric form factor, $G_E^{\ p}(Q^2)$, for the nucleon to indicate scale.

The G_E^p(Q²) scales used in this plot are based on polarization transfer measurements performed at Jefferson Lab (red) and measurements of the total elastic electron-nucleon scattering cross section (magenta).

The Axial Form Factor of the Nucleon is poorly known...

XX Max Born Symposium
December 7-10, 2005, Wroclaw, Poland

Coherent Neutrino Scattering

 $u_{\mu}(\overline{\nu_{\mu}}) \, N \to \mu^{+}(\mu^{-}) \, \pi \, N \, Charged \, Current$ $\nu_{\mu}(\overline{\nu_{\mu}}) \, N \to \nu_{\mu}(\overline{\nu_{\mu}}) \, \pi \, N \, Neutral \, Current$

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

7

Coherent Pion Production: A Window on the Weak Interaction

Example of MINER_V**A's Analysis Potential Coherent Pion Production**

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

9

Resonance Production

$$v_{\mu}(\overline{v_{\mu}}) \, n \, (p) \rightarrow \mu^{+}(\mu^{-}) \, R \, Charged \, Current$$
 $v_{\mu}(\overline{v_{\mu}}) \, n \, (p) \rightarrow v_{\mu}(\overline{v_{\mu}}) \, R \, Neutral \, Current$

Form Factors are needed to describe the N-Resonance transitions.

- electron scattering probes vector component of these form factors
- neutrino scattering will probe axial component

Cross sections, thus the form factors, for neutrino excitation of resonances are virtually unknown.

Quark-Hadron Duality

Quark-Hadron Duality: The relationship between the DIS structure function F₂ and the average resonance cross section as measured in electron scattering.

The cause of quark-hadron duality is not well known...

Neutrino scattering will help untangle this phenomena since neutrino interactions explicitly provide insight into flavor dependent behavior.

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

11

Nuclear Effects

The Past: Neutrino interactions were measured on heavy nuclei with low statistical precision; nuclear effects could be ignored...but...

The present: interactions are being measured with increasing precision; nuclear effects are now important...so...

The future: precision A-dependence studies must be performed!

Nuclear Effects

Predicted difference ν -A vs e/μ -A

MINER ν A should be able to determine this ratio to a few percent for n > 6 GeV.

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

13

Why are these Topics Important?

Physics Topic	Experimental Need
Deeply-Inelastic Scattering:	Observed energy in detectors can be obscured by final state interactions in nuclear media.
Quasi-Elastic Scattering: Axial Form Factor of Nucleon	The axial form factor of the nucleon is poorly known. Cross section uncertainties are a major portion of oscillation experiment error budgets.
Coherent Scattering: Single Pion Production	 Coherent scattering is, in general, a good probe of the weak interaction. Coherent scattering is expected to be a large background for future precision neutrino oscillation experiments.
Resonance Production: Both Neutral Current (NC) and Charged Current (CC)	Improved understanding of the transition from quasi-elastic processes to deeply-inelastic scattering processes in the weak sector.
Nuclear Physics	Nuclear medium dependence of neutrino interactions is important for interpretation of future neutrino oscillation studies. Differences are expected between charged and neutral lepton structure functions.

For Example: Helping MINOS and NOvA/T2K

Measurement of Δm^2 with MINOS:

Needed: detailed understanding of the relationship between the incoming neutrino energy and the visible energy in the detector

From: precision cross section measurements and neutrino-initiated nuclear reactions

Measurement of $\sin^2 \Theta_{13}$ with NO ν A:

Needed: absolute cross sections of signal & background reactions

From: precision cross section

From: precision cross section measurements

see: D. A. Harris, et al., hep-ex/041005 for further info...

XX Max Born Symposium
December 7-10, 2005, Wroclaw, Poland

15

How will Minerva Achieve these Physics Goals?

- Lots of Neutrinos
 - Provided by the NuMI Beam at FNAL
 - √ approximately 10³ times more intense than previously available beams!
- Massive Detector with:
 - ✓ Good Tracking Resolution
 - ✓ Good Momentum Resolution
 - ✓ Low Momentum Particle Detection Threshold
 - ✓ Particle Identification Capabilities
- Array of Nuclear Targets
 - Carbon
 - Iron
 - Lead

What is Minerva?

Main INjector ExpeRiment ν-A*

MINER A is a compact, fully active neutrino detector designed to study neutrino-nucleus interactions with unprecedented detail.

*Minerva, pictured above, was the Roman goddess of wisdom and technical skill.

XX Max Born Symposium
December 7-10, 2005, Wroclaw, Poland

17

The MINERVA Collaboration

- D. Drakoulakos, P. Stamoulis, G. Tzanakos, M. Zois *University of Athens, Greece*
- D. Casper#, J. Dunmore, C. Regis, B. Ziemer University of California, Irvine
- E. Paschos

University of Dortmund

- M. Andrews, D. Boehnlein, N. Grossman,
 D. A. Harris#, N. Grossman, J. Kilmer, M. Kostin, J.G. Morfin*, A. Pla-Dalmau,
 P. Rubinov, P. Shanahan, P. Spentzouris
 Fermi National Accelerator Laboratory
- I. Albayrak, M.E. Christy, C.E. Keppel, V. Tvaskis Hampton University
- R. Burnstein, O. Kamaev, N. Solomey Illinois Institute of Technology
- S. Kulagin

Institute for Nuclear Research, Russia

- I. Niculescu. G. Niculescu

 James Madison University
- G. Blazey, M.A.C. Cummings, V. Rykalin Northern Illinois University

Collaboration of:

Particle, Nuclear, and Theoretical physicists

- W.K. Brooks, A. Bruell, R. Ent, D. Gaskell, W. Melnitchouk, S. Wood Jefferson Lab
- L. Aliaga, J.L. Bazo, A. Gago

Pontificia Universidad Catolica del Peru

- S. Boyd, S. Dytman, M.-S. Kim, D. Naples, V. Paolone *University of Pittsburgh*
- A. Bodek, R. Bradford, H. Budd, J. Chvojka, P. de Barbaro, R. Flight, S. Manly, K. McFarland*, J. Park, W. Sakumoto, J. Steinman University of Rochester
- R. Gilman, C. Glasshausser, X. Jiang, G. Kumbartzki, R. Ransome#, E. Schulte Rutgers University
- A. Chakravorty
 Saint Xavier University
- D. Cherdack, H. Gallagher, T. Kafka, W.A. Mann, W. Oliver *Tufts University*
- R. Ochoa, O. Pereyar, J. Solana *Universidad Macional de Ingenieria*
- J.K. Nelson#, R. Schneider, F.X. Yumiceva
 The College of William and Mary
- * Co-Spokespersons
- # Members of the MINERvA Executive Committee

XX Max Born Symposium
December 7-10, 2005, Wroclaw, Poland

Lots of Neutrinos-NuMI Beam Line

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

19

The MINER_{VA} Detector

- ≥1/2 Ton each carbon, iron, and lead
- Active Target:
 - >5.78 Tons segmented scintillator planes
- Electromagnetic Calorimeter:
 - Interleaved lead sheet (0.2 cm thick) with segmented scintillator planes
- Hadronic Calorimeter:
 - Interleaved Iron sheet (2.54 cm thick) with segmented scintillator planes

20

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

Active Detector Elements

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

21

Front View of Detector

December 7-10, 2005, Wroclaw, Poland

Event Rates: 13 Million Total CC events 4 - year run

Fiducial Volume:

3 tons Polystyrene, ≈ 0.6 t C, $\approx 1/2$ t Fe and $\approx 1/2$ t Pb Expected CC event samples: 8.6 M ν events in Polystyrene 1.4 M ν events in C 1.4 M ν events in Fe 1.4 M ν events in Pb

Charged-Current Physics Topic Expected Statistics

3 Tons of Polystyrene

Quasi-Elastic 0.8 M

Resonance 1.6 M

Transition: Resonance to DIS 2 M
DIS and Structure Functions 4.1 M

Coherent Pion Production 85 K CC/37 K NC

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

23

Current Status of MINERVA

- MINERvA is an established project and approved by FermiLab.
- Component research and development, and prototyping, are well underway at our member institutions.
- Current scheduling model indicates construction starting in Oct. 2006 and installation-finishing/commissioning-starting in early Fall 2008.

Summary

- 1. What physics topics are accessible to Minerva?
 - A. Minerva will provide improved precision neutrino-nucleus cross section measurements at neutrino energies from 1 to 15 GeV.
 - B. Minerva will be able to investigate DIS, quasi-elastic, coherent, and resonance processes with precision much improved over most present neutrino cross section measurements.

2. Why are these topics important?

- A. Coherent processes comprise a significant source of background for neutrino future neutrino oscillation studies.
- B. Cross sections for resonance production in neutrino scattering are relatively unknown.
- C. Nuclear medium effects from neutrino interactions are expected to differ from their charged-lepton counterparts.
- D. Neutrino-nuclear effects have not been studied in high-mass targets.
- E. The axial form factor of the nucleon is poorly known.
- 3. How will Minerva address this physics?
 - A. Minerva is a multi-ton detector designed specifically for precision cross section measurements.
 - B. Minerva will make use of the high-intensity neutrino beam from NuMI.
 - C. Minerva is outfitted with an array of nuclear targets for the express purpose of high-precision studies of nuclear medium effects in neutrino interactions.

XX Max Born Symposium December 7-10, 2005, Wroclaw, Poland

25